Chapter 6 Taxonomic composition
6.0.1 Taxonomy barplot per individual
genome_counts_filt %>%
mutate_at(vars(-genome),~./sum(.)) %>% #apply TSS nornalisation
pivot_longer(-genome, names_to = "sample", values_to = "count") %>% #reduce to minimum number of columns
left_join(., genome_metadata, by = join_by(genome == genome)) %>% #append genome metadata
left_join(., sample_metadata, by = join_by(sample == sample)) %>% #append sample metadata
filter(!is.na(count)) %>%
ggplot(aes(y=count,x=sample, fill=phylum, group=phylum)) + #grouping enables keeping the same sorting of taxonomic units
geom_bar(stat="identity", colour="white", linewidth=0.1) + #plot stacked bars with white borders
scale_fill_manual(values=phylum_colors) +
labs(x = "Relative abundance", y ="Samples") +
facet_nested(. ~ bat_species, scales="free", space="free") + #facet per day and treatment
scale_y_continuous(expand = c(0.001, 0.001)) +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1),
axis.title.x = element_blank(),
panel.background = element_blank(),
panel.border = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.line = element_line(linewidth = 0.5, linetype = "solid", colour = "black"),
legend.position = "none",
strip.background.x=element_rect(color = NA, fill= "#f4f4f4"))
6.1 Taxonomy boxplot
6.1.1 Family
family_summary <- genome_counts_filt %>%
mutate_at(vars(-genome),~./sum(.)) %>% #apply TSS nornalisation
pivot_longer(-genome, names_to = "sample", values_to = "count") %>% #reduce to minimum number of columns
left_join(sample_metadata, by = join_by(sample == sample)) %>% #append sample metadata
left_join(., genome_metadata, by = join_by(genome == genome)) %>% #append genome metadata
group_by(sample,family) %>%
summarise(relabun=sum(count))
family_summary %>%
filter(!is.na(relabun)) %>%
group_by(family) %>%
summarise(mean=mean(relabun),sd=sd(relabun)) %>%
mutate(family= sub("^f__", "", family)) %>%
arrange(-mean) %>%
tt()
family | mean | sd |
---|---|---|
Diplorickettsiaceae | 2.066430e-01 | 0.3630831186 |
Enterobacteriaceae | 1.893277e-01 | 0.3066240395 |
Rickettsiaceae | 8.145172e-02 | 0.2374167586 |
Vibrionaceae | 7.972825e-02 | 0.2063738722 |
Mycoplasmoidaceae | 4.314658e-02 | 0.1816972619 |
Chromatiaceae | 3.786770e-02 | 0.1871226759 |
Desulfovibrionaceae | 2.805650e-02 | 0.0759014047 |
Pasteurellaceae | 2.746922e-02 | 0.1061643096 |
Weeksellaceae | 2.724435e-02 | 0.1486394013 |
Burkholderiaceae | 2.703566e-02 | 0.1383404820 |
Mycoplasmataceae | 2.582675e-02 | 0.1187781701 |
Enterococcaceae | 2.018684e-02 | 0.0706119540 |
Aeromonadaceae | 2.015713e-02 | 0.0692033892 |
Dysgonomonadaceae | 1.896333e-02 | 0.0497917479 |
Metamycoplasmataceae | 1.831217e-02 | 0.1281864393 |
Helicobacteraceae | 1.630153e-02 | 0.1107680426 |
Anaplasmataceae | 1.554908e-02 | 0.0927522928 |
Tannerellaceae | 1.549917e-02 | 0.0535737293 |
Acetobacteraceae | 1.360257e-02 | 0.0967742539 |
Adiutricaceae | 1.182852e-02 | 0.0349008385 |
Rhizobiaceae | 9.108139e-03 | 0.0366543408 |
Leptotrichiaceae | 7.074750e-03 | 0.0196300205 |
Bacteroidaceae | 6.853804e-03 | 0.0364486712 |
Lachnospiraceae | 6.496660e-03 | 0.0247911875 |
Synergistaceae | 5.587881e-03 | 0.0174072370 |
UBA932 | 5.565920e-03 | 0.0216533335 |
Neisseriaceae | 5.157037e-03 | 0.0268237187 |
Streptococcaceae | 3.499662e-03 | 0.0202503299 |
Oscillospiraceae | 2.692306e-03 | 0.0115704557 |
2.309250e-03 | 0.0058956882 | |
Burkholderiaceae_B | 2.235806e-03 | 0.0071724137 |
Gemellaceae | 2.121398e-03 | 0.0106187686 |
Rhodocyclaceae | 1.968326e-03 | 0.0113503074 |
Halomonadaceae | 1.883561e-03 | 0.0134513161 |
Microcoleaceae | 1.849207e-03 | 0.0092981482 |
Ruminococcaceae | 1.549323e-03 | 0.0059246842 |
Erysipelotrichaceae | 1.340191e-03 | 0.0046796931 |
Acutalibacteraceae | 1.217931e-03 | 0.0040092177 |
Elusimicrobiaceae | 1.081020e-03 | 0.0070276238 |
Christensenellaceae | 9.622707e-04 | 0.0065229596 |
Micrococcaceae | 8.277861e-04 | 0.0059115751 |
SZUA-567 | 7.768563e-04 | 0.0041153802 |
Mucispirillaceae | 7.025020e-04 | 0.0035261340 |
Fusobacteriaceae | 6.907455e-04 | 0.0029637575 |
WRBN01 | 3.657439e-04 | 0.0026119337 |
Beijerinckiaceae | 3.384698e-04 | 0.0016917143 |
Anaerotignaceae | 3.244078e-04 | 0.0012663030 |
Rikenellaceae | 3.236972e-04 | 0.0017316093 |
Clostridiaceae | 2.328503e-04 | 0.0016628836 |
Cyanobiaceae | 1.713001e-04 | 0.0009579297 |
Endomicrobiaceae | 1.568425e-04 | 0.0010127663 |
CAG-508 | 9.142321e-05 | 0.0006528923 |
Campylobacteraceae | 8.972836e-05 | 0.0004001237 |
UBA660 | 7.911019e-05 | 0.0005125600 |
CAG-239 | 7.629402e-05 | 0.0005448483 |
family_arrange <- family_summary %>%
filter(!is.na(relabun)) %>%
group_by(family) %>%
summarise(mean=sum(relabun)) %>%
arrange(-mean) %>%
select(family) %>%
mutate(family= sub("^f__", "", family)) %>%
pull()
family_summary %>%
left_join(genome_metadata %>% select(family,phylum) %>% unique(),by=join_by(family==family)) %>%
left_join(sample_metadata,by=join_by(sample==sample)) %>%
mutate(family= sub("^f__", "", family)) %>%
filter(family %in% family_arrange[1:20]) %>%
mutate(family=factor(family,levels=rev(family_arrange[1:20]))) %>%
filter(relabun > 0) %>%
ggplot(aes(x=relabun, y=family, group=family, color=phylum, fill=phylum)) +
scale_color_manual(values=phylum_colors[-8]) +
scale_fill_manual(values=phylum_colors[-8]) +
geom_boxplot(alpha=0.2) +
geom_jitter(alpha=0.5) +
facet_nested(. ~ bat_species)+
theme_minimal() +
theme(legend.position = "none")
6.1.2 Genus
genus_summary <- genome_counts_filt %>%
mutate_at(vars(-genome),~./sum(.)) %>% #apply TSS nornalisation
pivot_longer(-genome, names_to = "sample", values_to = "count") %>% #reduce to minimum number of columns
left_join(sample_metadata, by = join_by(sample == sample)) %>% #append sample metadata
left_join(genome_metadata, by = join_by(genome == genome)) %>% #append genome metadata
group_by(sample,genus) %>%
summarise(relabun=sum(count)) %>%
filter(genus != "g__")
genus_summary %>%
filter(!is.na(relabun)) %>%
group_by(genus) %>%
summarise(mean=mean(relabun),sd=sd(relabun)) %>%
arrange(-mean) %>%
tt()
genus | mean | sd |
---|---|---|
g__Aquirickettsiella | 2.066430e-01 | 0.3630831186 |
g__Rickettsia | 8.145172e-02 | 0.2374167586 |
g__Vibrio | 7.972825e-02 | 0.2063738722 |
g__Malacoplasma | 4.314658e-02 | 0.1816972619 |
g__Serratia | 3.781432e-02 | 0.1442735807 |
g__Klebsiella | 3.527392e-02 | 0.1609844058 |
g__Proteus | 3.502862e-02 | 0.1388093531 |
g__Apibacter | 2.724435e-02 | 0.1486394013 |
g__Aeromonas | 2.015713e-02 | 0.0692033892 |
g__Dysgonomonas | 1.896333e-02 | 0.0497917479 |
g__UBA710 | 1.831217e-02 | 0.1281864393 |
g__Morganella | 1.639039e-02 | 0.0700801355 |
g__Enterococcus | 1.584941e-02 | 0.0498525505 |
g__NHYM01 | 1.552127e-02 | 0.1108440094 |
g__Edwardiiplasma | 1.517989e-02 | 0.1073274591 |
g__Aggregatibacter | 1.425805e-02 | 0.0847502171 |
g__Tannerella | 1.333155e-02 | 0.0496532992 |
g__Pasteurella | 1.321117e-02 | 0.0668769540 |
g__Providencia | 1.317104e-02 | 0.0825454378 |
g__FLUQ01 | 1.244851e-02 | 0.0380568384 |
g__Mesenet | 1.197438e-02 | 0.0855141593 |
g__Arsenophonus | 1.191432e-02 | 0.0823521277 |
g__Adiutrix | 1.182852e-02 | 0.0349008385 |
g__Spiroplasma | 1.064685e-02 | 0.0532973801 |
g__Jejubacter | 9.570393e-03 | 0.0478520370 |
g__Pseudocitrobacter | 8.760620e-03 | 0.0574285139 |
g__Frigididesulfovibrio | 7.889555e-03 | 0.0203162078 |
g__WRHT01 | 7.718438e-03 | 0.0221726222 |
g__Sebaldella | 7.074750e-03 | 0.0196300205 |
g__Paraburkholderia | 6.910657e-03 | 0.0459867188 |
g__Bacteroides | 5.902028e-03 | 0.0311091136 |
g__Citrobacter_A | 5.809507e-03 | 0.0216896385 |
g__Escherichia | 5.512404e-03 | 0.0357559173 |
g__Neisseria | 5.157037e-03 | 0.0268237187 |
g__Caballeronia | 3.971317e-03 | 0.0283608787 |
g__Orbus | 3.915117e-03 | 0.0279595306 |
g__Wolbachia | 3.574704e-03 | 0.0121363242 |
g__Lactococcus | 3.499662e-03 | 0.0202503299 |
g__CALYQQ01 | 3.073067e-03 | 0.0165504095 |
g__Enterococcus_B | 2.505891e-03 | 0.0178956403 |
g__Enterobacillus | 2.297797e-03 | 0.0121221737 |
g__Saezia | 2.235806e-03 | 0.0071724137 |
g__DFXE01 | 2.167618e-03 | 0.0154798861 |
g__Trinickia | 2.120753e-03 | 0.0106036233 |
g__WQUU01 | 1.905223e-03 | 0.0087650731 |
g__Zymobacter | 1.883561e-03 | 0.0134513161 |
g__Planktothrix | 1.849207e-03 | 0.0092981482 |
g__Enterococcus_D | 1.831542e-03 | 0.0108315120 |
g__Breznakia | 1.340191e-03 | 0.0046796931 |
g__Scatolibacter | 1.217931e-03 | 0.0040092177 |
g__WRAV01 | 1.054847e-03 | 0.0056761271 |
g__QANA01 | 9.622707e-04 | 0.0065229596 |
g__UBA1794 | 9.517755e-04 | 0.0059502884 |
g__Acaricomes | 8.277861e-04 | 0.0059115751 |
g__GCA-022846635 | 7.962132e-04 | 0.0044153137 |
g__UBA1174 | 7.876488e-04 | 0.0049458893 |
g__Helicobacter_C | 7.802691e-04 | 0.0028054940 |
g__JAJBSZ01 | 7.768563e-04 | 0.0041153802 |
g__Fusobacterium_A | 6.907455e-04 | 0.0029637575 |
g__Tokpelaia_A | 5.169962e-04 | 0.0036920911 |
g__JAAYCI01 | 4.944755e-04 | 0.0019868365 |
g__JAHHUI01 | 3.657439e-04 | 0.0026119337 |
g__JAHZDZ01 | 3.244078e-04 | 0.0012663030 |
g__JAJQAW01 | 3.236972e-04 | 0.0017316093 |
g__Elusimicrobium | 2.933708e-04 | 0.0020950863 |
g__Sarcina | 2.328503e-04 | 0.0016628836 |
g__Vulcanococcus | 1.713001e-04 | 0.0009579297 |
g__Lawsonibacter | 1.704014e-04 | 0.0008167847 |
g__Endomicrobium | 1.568425e-04 | 0.0010127663 |
g__CHH4-2 | 1.498779e-04 | 0.0010703421 |
g__Entomobacter | 5.048026e-05 | 0.0001942887 |
g__Fusobacterium_C | 0.000000e+00 | 0.0000000000 |
g__Helicobacter_G | 0.000000e+00 | 0.0000000000 |
g__Photobacterium | 0.000000e+00 | 0.0000000000 |
genus_arrange <- genus_summary %>%
group_by(genus) %>%
summarise(mean=sum(relabun)) %>%
filter(genus != "g__")%>%
arrange(-mean) %>%
select(genus) %>%
mutate(genus= sub("^g__", "", genus)) %>%
pull()
genus_summary %>%
left_join(genome_metadata %>% select(genus,phylum) %>% unique(),by=join_by(genus==genus)) %>%
left_join(sample_metadata,by=join_by(sample==sample)) %>%
mutate(genus= sub("^g__", "", genus)) %>%
filter(genus %in% genus_arrange[1:20]) %>%
mutate(genus=factor(genus,levels=rev(genus_arrange[1:20]))) %>%
filter(relabun > 0) %>%
ggplot(aes(x=relabun, y=genus, group=genus, color=phylum)) +
scale_color_manual(values=phylum_colors) +
#geom_boxplot() +
geom_jitter(alpha=0.5) +
facet_nested(. ~ bat_species)+
theme_minimal()