Chapter 3 Data summary
Summary of sampled individuals and analysed faecal samples.
[1] 105
#number of samples by transect
sample_metadata %>%
group_by(Transect) %>%
summarise(n_samples = length(EHI_number)) %>%
tt()
Transect | n_samples |
---|---|
Aisa | 22 |
Aran | 37 |
Sentein | 19 |
Tourmalet | 27 |
#number of samples by transect and elevation
sample_metadata %>%
group_by(Transect, Elevation) %>%
summarise(n_samples = length(EHI_number)) %>%
tt()
Transect | Elevation | n_samples |
---|---|---|
Aisa | 1250 | 6 |
Aisa | 1450 | 6 |
Aisa | 1650 | 4 |
Aisa | 1850 | 6 |
Aran | 1000 | 6 |
Aran | 1080 | 7 |
Aran | 1340 | 5 |
Aran | 1500 | 6 |
Aran | 1650 | 7 |
Aran | 1850 | 6 |
Sentein | 941 | 5 |
Sentein | 1260 | 4 |
Sentein | 1628 | 5 |
Sentein | 1873 | 5 |
Tourmalet | 953 | 5 |
Tourmalet | 1255 | 4 |
Tourmalet | 1561 | 4 |
Tourmalet | 1797 | 4 |
Tourmalet | 2065 | 2 |
Tourmalet | 2134 | 3 |
Tourmalet | 2306 | 5 |
[1] 106
Geographical location of sampled lizards in the Pyrenees.
#Summarise for generating map
options(dplyr.summarise.inform = FALSE)
sample_metadata_summary <- sample_metadata %>%
#Group by geography and count samples
select(EHI_number, latitude, longitude, Transect) %>%
group_by(latitude, longitude, Transect) %>%
summarize(count = n()) %>%
ungroup()
#plotting on map
## Determine the longitude and latitude ranges
lon_range <- range(sample_metadata_summary$longitude, na.rm = TRUE)
lat_range <- range(sample_metadata_summary$latitude, na.rm = TRUE)
sample_metadata_summary %>%
ggplot(.) +
#render map
geom_map(
data=map_data("world"),
map = map_data("world"),
aes(long, lat, map_id=region),
color = "white", fill = "#cccccc", linewidth = 0.2
) +
#render points
geom_point(
aes(x=longitude,y=latitude, color=Transect),
alpha=0.5, shape=16) +
#add general plot layout
theme_minimal() +
theme(legend.position = "right",
axis.title.x=element_blank(),
axis.title.y=element_blank()
) + coord_map("mercator", xlim = lon_range, ylim = lat_range)