Chapter 6 Alpha diversity
if ("package:pscl" %in% search()) detach("package:pscl", unload = TRUE)
if ("package:MuMIn" %in% search()) detach("package:MuMIn", unload = TRUE)
if ("package:MASS" %in% search()) detach("package:MASS", unload = TRUE)
load("data/data.Rdata")
6.1 Summary table
library(hilldiv2)
behaviour_colors <- c(
tame = "#1f77b4",
aggr = "#d62728",
unsel = "#2ca02c"
)
# Calculate Hill numbers
richness <- genome_counts_filt %>%
column_to_rownames(var = "genome") %>%
dplyr::select(where(~ !all(. == 0))) %>%
hilldiv(., q = 0) %>% # richness
as.matrix() %>% # ensure it's a plain matrix for t()
t() %>%
as.data.frame() %>%
dplyr::rename(richness = 1) %>%
rownames_to_column(var = "sample")
neutral <- genome_counts_filt %>%
column_to_rownames(var = "genome") %>%
dplyr::select(where(~ !all(. == 0))) %>%
hilldiv(., q = 1) %>% # neutral diversity
as.matrix() %>%
t() %>%
as.data.frame() %>%
dplyr::rename(neutral = 1) %>%
rownames_to_column(var = "sample")
phylogenetic <- genome_counts_filt %>%
column_to_rownames(var = "genome") %>%
dplyr::select(where(~ !all(. == 0))) %>%
hilldiv(., q = 1, tree = genome_tree) %>% # phylogenetic diversity
as.matrix() %>%
t() %>%
as.data.frame() %>%
dplyr::rename(phylogenetic = 1) %>%
rownames_to_column(var = "sample")
# Aggregate basal GIFT into elements
genome_counts_filt <- genome_counts_filt[genome_counts_filt$genome %in% rownames(genome_gifts),]
genome_counts_filt <- genome_counts_filt %>%
column_to_rownames(., "genome") %>%
filter(rowSums(. != 0, na.rm = TRUE) > 0) %>%
dplyr::select_if(~!all(. == 0)) %>%
rownames_to_column(., "genome")
genome_gifts <- genome_gifts[rownames(genome_gifts) %in% genome_counts_filt$genome,]
genome_gifts <- genome_gifts[, colSums(genome_gifts != 0) > 0]
dist <- genome_gifts %>%
to.elements(., GIFT_db) %>%
traits2dist(., method = "gower")
functional <- genome_counts_filt %>%
filter(genome %in% rownames(dist)) %>%
column_to_rownames(var = "genome") %>%
dplyr::select(where(~ !all(. == 0))) %>%
hilldiv(., q = 1, dist = dist) %>% # functional diversity
as.matrix() %>%
t() %>%
as.data.frame() %>%
dplyr::rename(functional = 1) %>%
rownames_to_column(var = "sample") %>%
mutate(functional = if_else(is.nan(functional), 1, functional))
# Merge all metrics
alpha_div <- richness %>%
full_join(neutral, by = join_by(sample == sample)) %>%
full_join(phylogenetic, by = join_by(sample == sample)) %>%
full_join(functional, by = join_by(sample == sample))
alpha | aggr | tame | unsel |
---|---|---|---|
richness | 38.89±45.23 | 29.4±39.37 | 51.25±45.54 |
neutral | 16.43±18.23 | 14.11±17.85 | 22.02±19.84 |
phylogenetic | 3.48±2.55 | 3.14±2.45 | 4.34±2.48 |
functional | 1.29±0.22 | 1.29±0.24 | 1.37±0.21 |
alpha | fcolon | mcolon | kileum | dileum |
---|---|---|---|---|
richness | 97.91±21.81 | 24.33±25.63 | 1.73±0.65 | 25.83±32.59 |
neutral | 42.5±9.35 | 11.49±12.46 | 1.15±0.14 | 11.34±12.01 |
phylogenetic | 6.54±0.75 | 3.3±2.38 | 1.11±0.11 | 3.03±1.91 |
functional | 1.51±0.06 | 1.28±0.22 | 1.03±0.03 | 1.39±0.16 |
6.2 By location
6.2.1 Plots
richness_mean <- alpha_div %>%
left_join(sample_metadata, by = join_by(sample == sample))%>%
group_by(gut_location) %>%
dplyr::summarise_at(.vars = names(.)[2], .funs = c("Richness mean" = "mean", "Richness sd" = "sd"))
neutral_mean <- alpha_div %>%
left_join(sample_metadata, by = join_by(sample == sample))%>%
group_by(gut_location) %>%
dplyr::summarise_at(.vars = names(.)[3], .funs = c("Neutral mean" = "mean", "Neutral sd" = "sd"))
phylogenetic_mean <- alpha_div %>%
left_join(sample_metadata, by = join_by(sample == sample))%>%
group_by(gut_location) %>%
dplyr::summarise_at(.vars = names(.)[4], .funs = c("Phylogenetic mean" = "mean", "Phylogenetic sd" = "sd"))
cbind(richness_mean, neutral_mean[, 2:3], phylogenetic_mean[, 2:3])%>%
tt()
gut_location | Richness mean | Richness sd | Neutral mean | Neutral sd | Phylogenetic mean | Phylogenetic sd |
---|---|---|---|---|---|---|
D_ileum | 25.833333 | 32.5906661 | 11.335985 | 12.0056914 | 3.032274 | 1.9060737 |
F_colon | 97.909091 | 21.8057540 | 42.504875 | 9.3501832 | 6.544581 | 0.7458711 |
K_ileum | 1.727273 | 0.6466698 | 1.153628 | 0.1406374 | 1.112373 | 0.1137430 |
M_colon | 24.333333 | 25.6314201 | 11.486763 | 12.4646180 | 3.299202 | 2.3761209 |
group_n <- alpha_div %>%
left_join(., sample_metadata, by = join_by(sample == sample))%>%
dplyr::select(gut_location) %>%
pull() %>%
unique() %>%
length()
#pdf("figures/diversity_location.pdf",width=20, height=9)
alpha_div %>%
pivot_longer(-sample, names_to = "metric", values_to = "value") %>%
left_join(sample_metadata, by = "sample") %>%
mutate(metric=factor(metric,levels=c("richness","neutral","phylogenetic","functional"))) %>%
ggplot(aes(y = value, x = gut_location, group=gut_location, color=gut_location, fill=gut_location)) +
geom_boxplot(outlier.shape = NA, show.legend = FALSE, alpha = 0.5) +
geom_jitter(alpha=0.5) +
scale_color_manual(values = c(
F_colon = "#d6604d",
M_colon = "#542788",
D_ileum = "#fdb863",
K_ileum = "#bb99d8")) +
scale_fill_manual(values = c(
F_colon = "#d6604d",
M_colon = "#542788",
D_ileum = "#fdb863",
K_ileum = "#bb99d8", "50"
)) +
facet_wrap(. ~ metric, scales = "free", ncol=4) +
coord_cartesian(xlim = c(1, NA)) +
theme_classic() +
theme(
axis.ticks.x = element_blank(),
strip.text.x = element_text(size = 12, color="black",face="bold"),
strip.background = element_blank(),
panel.grid.minor.x = element_line(size = .1, color = "grey"),
axis.title.x = element_blank(),
axis.title.y = element_blank(),
axis.text.x = element_blank(),
legend.text=element_text(size=10),
legend.title = element_text(size=12))+
guides(fill = guide_legend(override.aes = list(size=3)))
6.2.2 Generalized linear models
6.2.2.1 Richness
First, we will model the richness only taking into account the gut location, as it seems to hold the greatest variance.
Count data are often modeled with Poisson distribution, but this distribution assumes the mean = variance. In the case of richness, the data is usually overdispersed (variance > mean), so we use a negative binomial model.
Analysis of Deviance Table
Model: Negative Binomial(1.314), link: log
Response: richness
Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 45 123.001
gut_location 3 76.079 42 46.922 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The p_value (< 2.2e-16) is much lower than 0.05 , so this model strongly suggests that alpha diversity differs greatly between gut locations.
fitting null model for pseudo-r2
Theta(1) = 0.550546, 2(Ls - Lm) = 54.832600
llh llhNull G2 McFadden r2ML r2CU
-182.1918677 -206.5422888 48.7008421 0.1178956 0.6530983 0.6531806
Even though gut location is highly significant, it only modestly explains richness variation on a McFadden scale
$emmeans
gut_location emmean SE df asymp.LCL asymp.UCL
D_ileum 3.252 0.258 Inf 2.746 3.76
F_colon 4.584 0.265 Inf 4.065 5.10
K_ileum 0.547 0.349 Inf -0.138 1.23
M_colon 3.192 0.259 Inf 2.685 3.70
Results are given on the log (not the response) scale.
Confidence level used: 0.95
$contrasts
contrast estimate SE df z.ratio p.value
D_ileum - F_colon -1.3324 0.370 Inf -3.603 0.0018
D_ileum - K_ileum 2.7051 0.434 Inf 6.231 <.0001
D_ileum - M_colon 0.0598 0.365 Inf 0.164 0.9984
F_colon - K_ileum 4.0375 0.438 Inf 9.216 <.0001
F_colon - M_colon 1.3922 0.370 Inf 3.762 0.0010
K_ileum - M_colon -2.6453 0.434 Inf -6.090 <.0001
Results are given on the log (not the response) scale.
P value adjustment: tukey method for comparing a family of 4 estimates
K_ileum has the lowest richness, F_colon the highest, and D_ileum / M_colon are intermediate.
Call:
MASS::glm.nb(formula = richness ~ gut_location, data = alpha_div_meta,
trace = TRUE, init.theta = 1.314009242, link = log)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.25167 0.25816 12.596 < 2e-16 ***
gut_locationF_colon 1.33237 0.36981 3.603 0.000315 ***
gut_locationK_ileum -2.70512 0.43412 -6.231 4.63e-10 ***
gut_locationM_colon -0.05982 0.36536 -0.164 0.869948
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for Negative Binomial(1.314) family taken to be 1)
Null deviance: 123.001 on 45 degrees of freedom
Residual deviance: 46.922 on 42 degrees of freedom
AIC: 374.38
Number of Fisher Scoring iterations: 1
Theta: 1.314
Std. Err.: 0.279
2 x log-likelihood: -364.384
6.2.2.2 Neutral
In this case neutral diversity is measured with the exponential of the Shannon entropy (Hill q =1), this means that the data is likely continuous (unlike richness, which is counts), and often has a normal distribution, therefore, we can use a linear model (lm).
Analysis of Variance Table
Response: neutral
Df Sum Sq Mean Sq F value Pr(>F)
gut_location 3 10650 3550.2 35.766 1.22e-11 ***
Residuals 42 4169 99.3
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R2m R2c
[1,] 0.7045247 0.7045247
$emmeans
gut_location emmean SE df lower.CL upper.CL
D_ileum 11.34 2.88 42 5.53 17.14
F_colon 42.50 3.00 42 36.44 48.57
K_ileum 1.15 3.00 42 -4.91 7.22
M_colon 11.49 2.88 42 5.68 17.29
Confidence level used: 0.95
$contrasts
contrast estimate SE df t.ratio p.value
D_ileum - F_colon -31.169 4.16 42 -7.495 <.0001
D_ileum - K_ileum 10.182 4.16 42 2.448 0.0834
D_ileum - M_colon -0.151 4.07 42 -0.037 1.0000
F_colon - K_ileum 41.351 4.25 42 9.734 <.0001
F_colon - M_colon 31.018 4.16 42 7.458 <.0001
K_ileum - M_colon -10.333 4.16 42 -2.485 0.0771
P value adjustment: tukey method for comparing a family of 4 estimates
The p-value (1.22e-11) is much lower than 0.05, suggesting that gut_location significantly affects neutral diversity.
R2m= 0.7045, which means that about 70% of the variation in neutral diversity is explained by gut location.
F_colon has the highest neutral diversity (≈42.5). K_ileum has the lowest (≈1.15). D_ileum and M_colon are similar (≈11.3–11.5).
6.2.2.3 Phylogenetic
Modelq1p_Loca <- lm(formula = phylogenetic ~ gut_location, data = alpha_div_meta)
anova(Modelq1p_Loca)
Analysis of Variance Table
Response: phylogenetic
Df Sum Sq Mean Sq F value Pr(>F)
gut_location 3 167.77 55.923 21.796 1.143e-08 ***
Residuals 42 107.76 2.566
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R2m R2c
[1,] 0.5923431 0.5923431
$emmeans
gut_location emmean SE df lower.CL upper.CL
D_ileum 3.03 0.462 42 2.099 3.97
F_colon 6.54 0.483 42 5.570 7.52
K_ileum 1.11 0.483 42 0.138 2.09
M_colon 3.30 0.462 42 2.366 4.23
Confidence level used: 0.95
$contrasts
contrast estimate SE df t.ratio p.value
D_ileum - F_colon -3.512 0.669 42 -5.253 <.0001
D_ileum - K_ileum 1.920 0.669 42 2.871 0.0312
D_ileum - M_colon -0.267 0.654 42 -0.408 0.9767
F_colon - K_ileum 5.432 0.683 42 7.953 <.0001
F_colon - M_colon 3.245 0.669 42 4.854 0.0001
K_ileum - M_colon -2.187 0.669 42 -3.271 0.0111
P value adjustment: tukey method for comparing a family of 4 estimates
6.2.2.4 Functional
Modelq1F_Loca <- lm(formula = functional ~ gut_location, data = alpha_div_meta)
anova(Modelq1F_Loca)
Analysis of Variance Table
Response: functional
Df Sum Sq Mean Sq F value Pr(>F)
gut_location 3 1.35326 0.45109 22.264 8.729e-09 ***
Residuals 42 0.85094 0.02026
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R2m R2c
[1,] 0.5974711 0.5974711
$emmeans
gut_location emmean SE df lower.CL upper.CL
D_ileum 1.39 0.0411 42 1.311 1.48
F_colon 1.51 0.0429 42 1.418 1.59
K_ileum 1.03 0.0429 42 0.947 1.12
M_colon 1.28 0.0411 42 1.195 1.36
Confidence level used: 0.95
$contrasts
contrast estimate SE df t.ratio p.value
D_ileum - F_colon -0.111 0.0594 42 -1.866 0.2582
D_ileum - K_ileum 0.360 0.0594 42 6.066 <.0001
D_ileum - M_colon 0.116 0.0581 42 1.992 0.2072
F_colon - K_ileum 0.471 0.0607 42 7.765 <.0001
F_colon - M_colon 0.227 0.0594 42 3.814 0.0024
K_ileum - M_colon -0.245 0.0594 42 -4.118 0.0010
P value adjustment: tukey method for comparing a family of 4 estimates
6.3 By behaviour and location
6.3.1 Plots
6.3.1.1 Richness
alpha_div %>%
pivot_longer(-sample, names_to = "metric", values_to = "value") %>%
left_join(sample_metadata, by = "sample") %>%
filter(!is.na(gut_location)) %>%
filter(metric=="richness") %>%
ggplot(aes(y = value, x = fox_behaviour, group=fox_behaviour, color=fox_behaviour, fill=fox_behaviour)) +
geom_boxplot(outlier.shape = NA, alpha = 0.5) +
geom_jitter(width = 0.1, alpha=0.5) +
scale_color_manual(values = c(
tame = "#1f77b4",
aggr = "#d62728",
unsel = "#2ca02c")) +
scale_fill_manual(values = c(
tame = "#1f77b4",
aggr = "#d62728",
unsel = "#2ca02c")) +
facet_wrap(. ~ gut_location, scales = "fixed", ncol=6) +
coord_cartesian(xlim = c(1, NA)) +
theme_classic() +
theme(
strip.background = element_blank(),
panel.grid.minor.x = element_line(size = .1, color = "grey"),
axis.title.x = element_blank(),
axis.title.y = element_blank(),
axis.text.x = element_text(angle = 45, hjust = 1)
)+ labs(title= "Richness by gut location and fox behaviour")
6.3.1.2 Neutral
alpha_div %>%
pivot_longer(-sample, names_to = "metric", values_to = "value") %>%
left_join(sample_metadata, by = "sample") %>%
filter(!is.na(gut_location)) %>%
filter(metric=="neutral") %>%
ggplot(aes(y = value, x = fox_behaviour, group=fox_behaviour, color=fox_behaviour, fill=fox_behaviour)) +
geom_boxplot(outlier.shape = NA, alpha = 0.5) +
geom_jitter(width = 0.1, alpha=0.5) +
scale_color_manual(values = c(
tame = "#1f77b4",
aggr = "#d62728",
unsel = "#2ca02c")) +
scale_fill_manual(values = c(
tame = "#1f77b4",
aggr = "#d62728",
unsel = "#2ca02c")) +
facet_wrap(. ~ gut_location, scales = "fixed", ncol=6) +
coord_cartesian(xlim = c(1, NA)) +
theme_classic() +
theme(
strip.background = element_blank(),
panel.grid.minor.x = element_line(size = .1, color = "grey"),
axis.title.x = element_blank(),
axis.title.y = element_blank(),
axis.text.x = element_text(angle = 45, hjust = 1)
)+ labs(title= "Neutral diversity by gut location and fox behaviour")
6.3.1.3 Phylogenetic
alpha_div %>%
pivot_longer(-sample, names_to = "metric", values_to = "value") %>%
left_join(sample_metadata, by = "sample") %>%
filter(!is.na(gut_location)) %>%
filter(metric=="phylogenetic") %>%
ggplot(aes(y = value, x = fox_behaviour, group=fox_behaviour, color=fox_behaviour, fill=fox_behaviour)) +
geom_boxplot(outlier.shape = NA, alpha = 0.5) +
geom_jitter(width = 0.1, alpha=0.5) +
scale_color_manual(values = c(
tame = "#1f77b4",
aggr = "#d62728",
unsel = "#2ca02c")) +
scale_fill_manual(values = c(
tame = "#1f77b4",
aggr = "#d62728",
unsel = "#2ca02c")) +
facet_wrap(. ~ gut_location, scales = "fixed", ncol=6) +
coord_cartesian(xlim = c(1, NA)) +
theme_classic() +
theme(
strip.background = element_blank(),
panel.grid.minor.x = element_line(size = .1, color = "grey"),
axis.title.x = element_blank(),
axis.title.y = element_blank(),
axis.text.x = element_text(angle = 45, hjust = 1)
)+ labs(title= "Phylogenetic diversity by gut location and fox behaviour")
6.3.1.4 Functional
alpha_div %>%
pivot_longer(-sample, names_to = "metric", values_to = "value") %>%
left_join(sample_metadata, by = "sample") %>%
filter(!is.na(gut_location)) %>%
filter(metric=="functional") %>%
ggplot(aes(y = value, x = fox_behaviour, group=fox_behaviour, color=fox_behaviour, fill=fox_behaviour)) +
geom_boxplot(outlier.shape = NA, alpha = 0.5) +
geom_jitter(width = 0.1, alpha=0.5) +
scale_color_manual(values = c(
tame = "#1f77b4",
aggr = "#d62728",
unsel = "#2ca02c")) +
scale_fill_manual(values = c(
tame = "#1f77b4",
aggr = "#d62728",
unsel = "#2ca02c")) +
facet_wrap(. ~ gut_location, scales = "fixed", ncol=6) +
coord_cartesian(xlim = c(1, NA)) +
theme_classic() +
theme(
strip.background = element_blank(),
panel.grid.minor.x = element_line(size = .1, color = "grey"),
axis.title.x = element_blank(),
axis.title.y = element_blank(),
axis.text.x = element_text(angle = 45, hjust = 1)
)+ labs(title= "Functional diversity by gut location and fox behaviour")
6.3.2 Mixed models
6.3.2.1 Richness
Model_richness <- glmer.nb(richness ~ fox_behaviour+(1|gut_location), data = alpha_div_meta)
summary(Model_richness)
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
Family: Negative Binomial(1.3513) ( log )
Formula: richness ~ fox_behaviour + (1 | gut_location)
Data: alpha_div_meta
AIC BIC logLik -2*log(L) df.resid
386.7 395.8 -188.3 376.7 41
Scaled residuals:
Min 1Q Median 3Q Max
-1.0886 -0.6944 -0.1725 0.3584 3.2176
Random effects:
Groups Name Variance Std.Dev.
gut_location (Intercept) 2.059 1.435
Number of obs: 46, groups: gut_location, 4
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.0142 0.7503 4.017 5.89e-05 ***
fox_behaviourtame -0.4865 0.3047 -1.596 0.110
fox_behaviourunsel 0.3134 0.3846 0.815 0.415
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Correlation of Fixed Effects:
(Intr) fx_bhvrt
fox_behvrtm -0.207
fox_bhvrnsl -0.161 0.394
$emmeans
fox_behaviour emmean SE df asymp.LCL asymp.UCL
aggr 3.01 0.750 Inf 1.54 4.48
tame 2.53 0.749 Inf 1.06 4.00
unsel 3.33 0.786 Inf 1.79 4.87
Results are given on the log (not the response) scale.
Confidence level used: 0.95
$contrasts
contrast estimate SE df z.ratio p.value
aggr - tame 0.486 0.305 Inf 1.596 0.2472
aggr - unsel -0.313 0.385 Inf -0.815 0.6938
tame - unsel -0.800 0.385 Inf -2.077 0.0946
Results are given on the log (not the response) scale.
P value adjustment: tukey method for comparing a family of 3 estimates
There is no significant effect of fox behaviour on the richness.
6.3.2.2 Neutral
Model_neutral <- lme(fixed = neutral ~ fox_behaviour, data = alpha_div_meta,
random = ~ 1 | gut_location)#log(seq_depth)+
summary(Model_neutral)
Linear mixed-effects model fit by REML
Data: alpha_div_meta
AIC BIC logLik
346.8649 355.6709 -168.4324
Random effects:
Formula: ~1 | gut_location
(Intercept) Residual
StdDev: 17.6769 9.756911
Fixed effects: neutral ~ fox_behaviour
Value Std.Error DF t-value p-value
(Intercept) 16.993796 9.134109 40 1.8604766 0.0702
fox_behaviourtame -2.880201 3.173896 40 -0.9074655 0.3696
fox_behaviourunsel 5.023322 4.148905 40 1.2107584 0.2331
Correlation:
(Intr) fx_bhvrt
fox_behaviourtame -0.183
fox_behaviourunsel -0.140 0.404
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-1.62821779 -0.78911686 -0.04122328 0.46700583 2.23438491
Number of Observations: 46
Number of Groups: 4
6.3.2.3 Phylogenetic
Model_phylo <- lme(fixed = phylogenetic ~ fox_behaviour, data = alpha_div_meta,
random = ~ 1 | gut_location)
summary(Model_phylo)
Linear mixed-effects model fit by REML
Data: alpha_div_meta
AIC BIC logLik
188.6297 197.4357 -89.31487
Random effects:
Formula: ~1 | gut_location
(Intercept) Residual
StdDev: 2.20058 1.577186
Fixed effects: phylogenetic ~ fox_behaviour
Value Std.Error DF t-value p-value
(Intercept) 3.518775 1.161669 40 3.0290686 0.0043
fox_behaviourtame -0.380035 0.513043 40 -0.7407461 0.4632
fox_behaviourunsel 0.822181 0.670654 40 1.2259398 0.2274
Correlation:
(Intr) fx_bhvrt
fox_behaviourtame -0.233
fox_behaviourunsel -0.178 0.404
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-1.47646378 -0.74894597 0.02329104 0.31903019 2.12465637
Number of Observations: 46
Number of Groups: 4
6.3.2.4 Functional
Model_func <- lme(fixed = functional ~ fox_behaviour, data = alpha_div_meta,
random = ~ 1 | gut_location)
summary(Model_func)
Linear mixed-effects model fit by REML
Data: alpha_div_meta
AIC BIC logLik
-18.20571 -9.399711 14.10286
Random effects:
Formula: ~1 | gut_location
(Intercept) Residual
StdDev: 0.197249 0.1424272
Fixed effects: functional ~ fox_behaviour
Value Std.Error DF t-value p-value
(Intercept) 1.2866404 0.10420652 40 12.347024 0.0000
fox_behaviourtame 0.0054055 0.04633013 40 0.116674 0.9077
fox_behaviourunsel 0.0799250 0.06056314 40 1.319697 0.1944
Correlation:
(Intr) fx_bhvrt
fox_behaviourtame -0.235
fox_behaviourunsel -0.179 0.404
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-2.3122951 -0.4504445 -0.0874495 0.5457938 1.8860386
Number of Observations: 46
Number of Groups: 4
detach("package:pscl", unload = TRUE)
detach("package:MuMIn", unload = TRUE)
detach("package:MASS", unload = TRUE)
Warning: namespace 'MASS' no puede ser descargado:
namespace 'MASS' is imported by 'lmerTest', 'clusterGeneration', 'vegan', 'ANCOMBC', 'lme4', 'multtest', 'mia', 'geiger', 'DescTools', 'ade4', 'TH.data', 'phytools' so cannot be unloaded