Chapter 9 Behavioural differences
9.1 Behavioral index
Index that aggregates bites, hisses, retreats and avoidance traits into a single continuous scale ranging between 0 (tame) and 1 (aggressive).
sample_metadata %>%
rowwise() %>%
mutate(behaviour = sum(c_across(c(bites, hisses,retreats,avoidance))/4, na.rm = TRUE)) %>%
ungroup() %>%
mutate(sex = factor(sex)) %>%
dplyr::select(origin,behaviour) %>%
ggplot(aes(x=origin,y=behaviour,group=origin)) +
geom_dotplot(binaxis='y',
stackdir='center',
dotsize = .4,
fill="grey") +
theme_classic()
9.2 Bites
sample_metadata %>%
select(origin, bites) %>%
group_by(origin, bites) %>%
summarise(count = n(), .groups = "drop") %>%
pivot_wider(names_from = bites, values_from = count, values_fill = 0) %>%
rename(NoBites = `0`, Bites = `1`) %>%
select(NoBites, Bites) %>%
as.matrix() %>%
chisq.test() %>%
tidy()
# A tibble: 1 × 4
statistic p.value parameter method
<dbl> <dbl> <int> <chr>
1 11.8 0.000590 1 Pearson's Chi-squared test with Yates' continuity correction
9.3 Hisses
sample_metadata %>%
select(origin, hisses) %>%
group_by(origin, hisses) %>%
summarise(count = n(), .groups = "drop") %>%
pivot_wider(names_from = hisses, values_from = count, values_fill = 0) %>%
rename(NoHisses = `0`, Hisses = `1`) %>%
select(NoHisses, Hisses) %>%
as.matrix() %>%
chisq.test() %>%
tidy()
# A tibble: 1 × 4
statistic p.value parameter method
<dbl> <dbl> <int> <chr>
1 11.2 0.000809 1 Pearson's Chi-squared test with Yates' continuity correction
9.4 Retreats
sample_metadata %>%
select(origin, retreats) %>%
group_by(origin, retreats) %>%
summarise(count = n(), .groups = "drop") %>%
pivot_wider(names_from = retreats, values_from = count, values_fill = 0) %>%
rename(NoRetreats = `0`, Retreats = `1`) %>%
select(NoRetreats, Retreats) %>%
as.matrix() %>%
chisq.test() %>%
tidy()
# A tibble: 1 × 4
statistic p.value parameter method
<dbl> <dbl> <int> <chr>
1 5.44 0.0197 1 Pearson's Chi-squared test with Yates' continuity correction
9.5 Fear
sample_metadata %>%
select(origin, avoidance) %>%
group_by(origin, avoidance) %>%
summarise(count = n(), .groups = "drop") %>%
pivot_wider(names_from = avoidance, values_from = count, values_fill = 0) %>%
rename(NoAvoidance = `0`, Avoidance = `1`) %>%
select(NoAvoidance, NoAvoidance) %>%
as.matrix() %>%
chisq.test() %>%
tidy()
# A tibble: 1 × 4
statistic p.value parameter method
<dbl> <dbl> <dbl> <chr>
1 15.5 0.0000820 1 Chi-squared test for given probabilities