Chapter 8 Compositional analysis
8.0.1 Genome phylogeny
#Get phylum colors from the EHI standard
phylum_colors <- genome_metadata %>%
left_join(read_tsv("https://raw.githubusercontent.com/earthhologenome/EHI_taxonomy_colour/main/ehi_phylum_colors.tsv"), by=join_by(phylum == phylum)) %>%
arrange(match(genome, genome_tree$tip.label)) %>%
select(phylum, colors) %>%
unique() %>%
arrange(phylum) %>%
select(colors) %>%
pull()
# Generate the phylum color heatmap
phylum_heatmap <- genome_metadata %>%
left_join(read_tsv("https://raw.githubusercontent.com/earthhologenome/EHI_taxonomy_colour/main/ehi_phylum_colors.tsv"), by=join_by(phylum == phylum)) %>%
arrange(match(genome, genome_tree$tip.label)) %>%
select(genome,phylum) %>%
mutate(phylum = factor(phylum, levels = unique(phylum))) %>%
column_to_rownames(var = "genome")
# Generate basal tree
circular_tree <- force.ultrametric(genome_tree, method="extend") %>% # extend to ultrametric for the sake of visualisation
ggtree(., layout="fan", open.angle=10, size=0.5)
***************************************************************
* Note: *
* force.ultrametric does not include a formal method to *
* ultrametricize a tree & should only be used to coerce *
* a phylogeny that fails is.ultrametric due to rounding -- *
* not as a substitute for formal rate-smoothing methods. *
***************************************************************
# Add phylum ring
circular_tree <- gheatmap(circular_tree, phylum_heatmap, offset=0.40, width=0.1, colnames=FALSE) +
scale_fill_manual(values=phylum_colors) +
geom_tiplab2(size=1, hjust=-0.1) +
theme(legend.position = "none", plot.margin = margin(0, 0, 0, 0), panel.margin = margin(0, 0, 0, 0))
# Flush color scale to enable a new color scheme in the next ring
circular_tree <- circular_tree + new_scale_fill()
# Add completeness ring
circular_tree <- circular_tree +
new_scale_fill() +
scale_fill_gradient(low = "#d1f4ba", high = "#f4baba") +
geom_fruit(
data=genome_metadata,
geom=geom_bar,
mapping = aes(x=completeness, y=genome, fill=contamination),
offset = 0.40,
orientation="y",
stat="identity")
# Add genome-size ring
circular_tree <- circular_tree +
new_scale_fill() +
scale_fill_manual(values = "#cccccc") +
geom_fruit(
data=genome_metadata,
geom=geom_bar,
mapping = aes(x=length, y=genome),
offset = 0.05,
orientation="y",
stat="identity")
# Add text
circular_tree <- circular_tree +
annotate('text', x=2.7, y=0, label=' Phylum', family='arial', size=3.5) +
annotate('text', x=3.1, y=0, label=' Genome quality', family='arial', size=3.5) +
annotate('text', x=3.5, y=0, label=' Genome size', family='arial', size=3.5)
#Plot circular tree
circular_tree %>% open_tree(30) %>% rotate_tree(90)
8.0.2 Genome quality
# A tibble: 1 × 2
mean sd
<dbl> <dbl>
1 90.9 9.12
# A tibble: 1 × 2
mean sd
<dbl> <dbl>
1 1.49 1.77
#Generate quality biplot
genome_biplot <- genome_metadata %>%
select(c(genome,domain,phylum,completeness,contamination,length)) %>%
arrange(match(genome, rev(genome_tree$tip.label))) %>% #sort MAGs according to phylogenetic tree
ggplot(aes(x=completeness,y=contamination,size=length,color=phylum)) +
geom_point(alpha=0.7) +
ylim(c(10,0)) +
scale_color_manual(values=phylum_colors) +
labs(y= "Contamination", x = "Completeness") +
theme_classic() +
theme(legend.position = "none")
#Generate contamination boxplot
genome_contamination <- genome_metadata %>%
ggplot(aes(y=contamination)) +
ylim(c(10,0)) +
geom_boxplot(colour = "#999999", fill="#cccccc") +
theme_void() +
theme(legend.position = "none",
axis.title.x = element_blank(),
axis.title.y = element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
plot.margin = unit(c(0, 0, 0.40, 0),"inches")) #add bottom-margin (top, right, bottom, left)
#Generate completeness boxplot
genome_completeness <- genome_metadata %>%
ggplot(aes(x=completeness)) +
xlim(c(50,100)) +
geom_boxplot(colour = "#999999", fill="#cccccc") +
theme_void() +
theme(legend.position = "none",
axis.title.x = element_blank(),
axis.title.y = element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
plot.margin = unit(c(0, 0, 0, 0.50),"inches")) #add left-margin (top, right, bottom, left)
#Render composite figure
grid.arrange(grobs = list(genome_completeness,genome_biplot,genome_contamination),
layout_matrix = rbind(c(1,1,1,1,1,1,1,1,1,1,1,4),
c(2,2,2,2,2,2,2,2,2,2,2,3),
c(2,2,2,2,2,2,2,2,2,2,2,3),
c(2,2,2,2,2,2,2,2,2,2,2,3),
c(2,2,2,2,2,2,2,2,2,2,2,3),
c(2,2,2,2,2,2,2,2,2,2,2,3),
c(2,2,2,2,2,2,2,2,2,2,2,3),
c(2,2,2,2,2,2,2,2,2,2,2,3),
c(2,2,2,2,2,2,2,2,2,2,2,3),
c(2,2,2,2,2,2,2,2,2,2,2,3),
c(2,2,2,2,2,2,2,2,2,2,2,3),
c(2,2,2,2,2,2,2,2,2,2,2,3)))
8.0.3 Functional ordination
# Aggregate basal GIFT into elements
function_table <- genome_gifts %>%
to.elements(., GIFT_db)
# Generate the tSNE ordination
tSNE_function <- Rtsne(X=function_table, dims = 2, check_duplicates = FALSE)
# Plot the ordination
function_ordination <- tSNE_function$Y %>%
as.data.frame() %>%
mutate(genome=rownames(function_table)) %>%
inner_join(genome_metadata, by="genome") %>%
rename(tSNE1="V1", tSNE2="V2") %>%
select(genome,phylum,tSNE1,tSNE2, length) %>%
ggplot(aes(x = tSNE1, y = tSNE2, color = phylum, size=length))+
geom_point(shape=16, alpha=0.7) +
scale_color_manual(values=phylum_colors) +
theme_minimal() +
labs(color="Phylum", size="Genome size") +
guides(color = guide_legend(override.aes = list(size = 5))) # enlarge Phylum dots in legend
function_ordination
8.0.4 Taxonomy barplot per treatment
genome_counts %>%
mutate_at(vars(-genome),~./sum(.)) %>% #apply TSS nornalisation
pivot_longer(-genome, names_to = "sample", values_to = "count") %>% #reduce to minimum number of columns
left_join(., genome_metadata, by = join_by(genome == genome)) %>% #append genome metadata
left_join(., sample_metadata, by = join_by(sample == sample)) %>% #append sample metadata
filter(!is.na(count)) %>%
filter(!is.na(animal)) %>%
filter(cage %in% c("C03","C04","C05","C06","C10","C11","C12","C13")) %>%
mutate(treatment = factor(treatment, levels = c("OP","HT","HR","CD","CR","DT","DR","AN","T1","T2","T3"))) %>%
ggplot(., aes(x=count,y=sample, fill=phylum, group=phylum)) + #grouping enables keeping the same sorting of taxonomic units
geom_bar(stat="identity", colour="white", linewidth=0.1) + #plot stacked bars with white borders
scale_fill_manual(values=phylum_colors) +
labs(y = "Relative abundance") +
facet_nested(cage + treatment ~ ., scales="free") + #facet per day and treatment
guides(fill = guide_legend(ncol = 1)) +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1),
strip.text.y = element_text(angle = 0),
axis.title.x = element_blank(),
panel.background = element_blank(),
panel.border = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.line = element_line(linewidth = 0.5, linetype = "solid", colour = "black"),
panel.spacing = unit(0, "lines")) +
labs(fill="Phylum")
8.0.5 Taxonomy barplot per individual
# Facet groups for coloring
facet_boxes <- sample_metadata %>%
filter(!is.na(count)) %>%
filter(!is.na(animal)) %>%
filter(cage %in% c("C03","C04","C05","C06","C10","C11","C12","C13")) %>%
distinct(group,cage,animal) %>%
arrange(group,cage)
Warning: There was 1 warning in `filter()`.
ℹ In argument: `!is.na(count)`.
Caused by warning in `is.na()`:
! is.na() applied to non-(list or vector) of type 'closure'
strip_background <- strip_nested(background_y = elem_list_rect(fill = c(
# level1 colors
case_match(
unique(facet_boxes$group),
"invariable" ~ "#ccd47b",
"variable" ~ "#7dacc9",
.default = "grey"
),
# level2 colors
case_match(
unique(facet_boxes$cage),
"C04" ~ "#dee3aa",
"C13" ~ "#a7ab7e",
"C03" ~ "#adcde0",
"C05" ~ "#89a0ad",
"C06" ~ "#adcde0",
"C10" ~ "#89a0ad",
"C11" ~ "#adcde0",
"C12" ~ "#89a0ad",
.default = "grey"
),
# level3 colors
case_match(
unique(facet_boxes$animal),
"X" ~ "green",
.default = "#f4f4f4"
)
)))
genome_counts %>%
mutate_at(vars(-genome),~./sum(.)) %>% #apply TSS nornalisation
pivot_longer(-genome, names_to = "sample", values_to = "count") %>% #reduce to minimum number of columns
left_join(., genome_metadata, by = join_by(genome == genome)) %>% #append genome metadata
left_join(., sample_metadata, by = join_by(sample == sample)) %>% #append sample metadata
filter(!is.na(count)) %>%
filter(!is.na(animal)) %>%
filter(cage %in% c("C03","C04","C05","C06","C10","C11","C12","C13")) %>%
filter(treatment %in% c("OP","HT","HR","CT","CR","DT","DR","AN","T1","T2","T3")) %>%
mutate(sample = factor(sample, levels = sample_metadata %>%
arrange(animal,match(treatment,rev(c("OP","HT","HR","CT","CR","DT","DR","AN","T1","T2","T3")))) %>%
select(sample) %>%
filter(!is.na(sample)) %>%
pull() )) %>% # sort samples
ggplot(., aes(x=count,y=sample, fill=phylum, group=phylum)) + #grouping enables keeping the same sorting of taxonomic units
geom_bar(stat="identity", colour="white", linewidth=0.1) + #plot stacked bars with white borders
scale_fill_manual(values=phylum_colors) +
labs(x = "Relative abundance", y ="Samples") +
facet_nested(group + cage + animal ~ ., scales="free", strip = strip_background) + #facet per day and treatment
guides(fill = guide_legend(ncol = 1)) +
scale_x_continuous(expand = c(0.001, 0.001)) +
theme(axis.text.y = element_blank(),
axis.title.x = element_blank(),
strip.text.y = element_text(angle = 0),
panel.background = element_blank(),
panel.border = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.line = element_line(linewidth = 0.5, linetype = "solid", colour = "black"),
panel.spacing = unit(0, "lines"),
legend.position = "none")